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The plane problem of elasticity theory for a body weakened by a system of 
arbitrarily oriented rectilinear cracks has been reduced to a system of singular 

integral equations. The following cases have been considered: a system of 
cracks in infinite and semi-infinite plates, a system of cracks in an infinite 
plane with a circular hole, a periodic and doubly-periodic system of cracks of 
arbitrary orientation in an unbounded plate, and a periodic system of cracks in 

a semi-infinite plane. The analytical solution of the equations obtained can 
be found by the perturbation method when the cracks are far from each other 

and from the domain boundaries; in other cases their solution can be found 

numerically. 

1. In an elastic isotropic plane connected to the Cartesian xOy-coordinate system, 
let there be N slits (cracks) of length &r,(Ic = 1, 2, . . ., iv). The centers Ok of 
the cracks are determined by the coordinates zko = zk” + iyk’. The origins of local 

xkOkyk -coordinate systems are placed at the points ok. The OkxC-axes coincide 
with the slit lines and make the angles akwith the Ox-axis. The edges of the cracks 
are loaded by the self-equilibrating forces 

pk(xk) = Nkr - iT$ = NjL--- iT,-, Ixkl<Uk, k=1,2 I..., N (1.1) 

Let us first consider the problem of determining the stresses in an unbounded elastic 
plane with one crack ) xk 1 < uk, gk = 0 and the 
given thereon. The Muskhelishvili [1] stress functions 

displacement discontinuity gk(xk) 

@ (zk) and Y (zk) for the prob- 
lem mentioned are in the zkokyk-coordinate system r2*41 

ak 

@( zk) = -& 1 g,’ (t) dt 

-ak 
t-zzk ’ 

'k - 

y (zk) = & ’ U g,’ G) - 
-ak 

t - Zk 

(1.2) 

By virtue of the linearity of the problem, the functions 

(1.3) 

obtained by superposition of the stress functions (1.2) for the isolated cracks, describe 

677 
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the state of stress of an elastic plane caused by the displacement discontinuities gA(zk) 
at the N segments 1 %k 1 < ak, 9~ = 0 (k = 1, 2, . . ., N). Let us determine 
the stresses on the line Onx, due to the displacement discontinuities gk(lL^k) (h = 1, 
2 

XT\ 
7 - . . 

Here 

Equating the stresses (1.4) to the stresses (1.1) given on the edges of the cracks, we ob- 
tain a system of N singular integral equations in the unknown functions gk’(z) [5, 61 

5 5 &k’ @) &k (f, 2) i- gk’ (f) L,, (6 x)1 dt = np, (2) 0.6) 

k=l--ak 

Irlda,,, n=l,Z,..., N 

(Here and henceforth, for convenience, the subscript in the 2, is omitted). The kernels 
(1.5) of this system of equations are regular, with the exception of the case n = k when 
_Knh-( t, X) goes over into the Cauchy singular kernel. 

2. Let us consider the centers of the cracks to be on the 0~ -axis, the spacings bet- 
ween the centers of adjacent cracks to be constant and equal to d(zk’= kd, k = 0, 

+I, *& * * .), and the lengths and slopes of the cracks to be identical (ak := UT 

ah = a). Under the assumption that the same load (p k (zk) = p (Jk)) is applied to 
all the cracks and the number of cracks tends to infinity, we obtain a periodic system of 

cracks ofarbitrary Orient2RiOn in an infinite plane, Hence gk’(zk) = g’(Zk). After Sum- 

mation we find from (1.3) 
I a 

a2 (2) = -$- 1 ct g $ (teia - 2) g’ (t) dt 
--a 

(2.1) 

u 

Y2 (zf = G 1 {g’ e-2ia ctg + (teim - 2) - 
--a 

[ 
ct,g $ (t&a - 2) + + (t - tezia -b zeia) cosec2 5 (teia - z,] g’ (t)} dt 

Having determined the stresses on the line of any of the cracks, with center at the point 
0, say, by means of these functions and having equated them to the given load (1.1). 
we obtain a singular integral equation in the unknown function g’(z) 

a 

s [g’ (t) K1 (t - x) +g’(t)L,(f-x)1 dt = np (;T), 15 1 .< a P.2) 

--a 
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Here 
me-ia 

f e-is ct.g _ 
> 

(2.3) 

In the case of an infinite series of colinear cracks (a = 0) , we arrive at the equation 

1 9 
-a- s g’ (t) ctg .n @; z, dt=P(+ Ixl\<a (2.4) 

considered in [7] for a nizmal load on the edges of the crack (Im p(z) = 0). The ex- 

act solution of (2.4) is 

g’ (5) = (2.5) 

a 

slf t,gqLt.g2+ tg2+g+ ( ) -l p (t) at 
--a 

For a = n I 2 we arrive, from (2.2). at an integral equation for an infinite series of 

parallel cracks, obtained for a symmetric ( Im p (a$ = 0) [S, 91 and antisymmetric 

(Rep (x) = 0) [lOI load. 

3, Let us consider an unbounded elastic plane weakened by a doubly-periodic sys- 
tem of cracks of arbitrary orientation, Let the centers of the cracks be at the vertices 
of the period parallelograms, i.e. at the points P = mq 4- ?ZO~ (m, n = 0, fl, 

*2, . . .), where or and o2 are the fundamental periods 

WI) > Oh 
(Im or = 0, Im ( w2 / 

The complex potentials of the elasticity theory problem for the domain mentioned 
can be obtained analogously to the case of the periodic problem by setting uk = a, 

ah = a, zk* = P, pk(xk) = p (zk).in (1.3). Then g,’ (zk) = g’(xk)and we obtain 

from (1.3) Cl 

@s (z) = Y$- 5 c (teia - 2) g’ (t) dt + A (3.1) 

--a 
a 

Y,(z) = & s {e+c (teia - z)g)+ 

[eiapl (teia - z) - tp (teia - z)] g’ (t)} dt + Be-2i3L 

Here c is the Weierstrass zeta function, p (z) is the Weierstrass elliptic function, and 
Pr(z) is a special meromorphic function l-111. At congruent points these functions sa- 

tisfy the relationships [12] 

6, = 25 (+), 7Y = 243 -G*!,(G), v==l, 2 
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In order to avoid divergent sums, the unknown constants A and B, which can be de- 
termined from the static conditions [ll], were introduced to obtain the complex poten- 

tials (3.1). To this end, let us consider the principal vector of all the forces acting along 
the arbitrary path CD connecting two congruent points of the plane. The expression 
for the principal vector is [l] 

x + iY = - ig (2) [CD = - i[(P3(z) + z@,(z) + $3(z)kF (3.3) 

(rps’tz) = Q?(& 43’ (2) = Yu,(z)) 

A self-equilibrated load acts on each crack, hence, the principal vector of all the for- 

ces along the arc CD is zero. i.e. 

qfz+O,) -9(zl =o. v--1.2 (3.4) 

Using the equality a 

s 
g’ (t) dt = 0, 5’ (z) = - P (2) (3.5) 

---a 
we find from (3.1) (C,, C, are integration constants) 

. a 

r&(z) = -g- s g (t) 5 (f& - z)dt+Az+C1 
---a 

1 ‘I - 
93 (z) = K s 

Ug (t) + g Ml 5 (teia - z> -t- 
-a 

(3.6) 

eiag (t) [eiap, (teia - z) - tp (teia - FL)]) dt + Bze+a + Cz 

Substituting the functions (3.6) into (3.3) and taking account of (3.2), we obtain a sys- 
tem of equations from (3.4) 

(A + ~)~,+jji;i~$iad~b + y,b + 6,(e-2iab i- ~e2% Y = 1,2 (3.7) 

. p1 

b= G \ gut i 

from which theaconstants Red and B are determined. The quantity Im A naturally 
remains arbitrary. 

The stress functions (3.1) correspond to the doubie-periodicity of the problem and 
satisfy all the requirements, with the exception of the boundary conditions on the edges 
of the cracks. Having satisfied the boundary condition on any crack, for example, one 
with center at the point 0 

CD (50) + 0 (ICCJ + z,Q’(z,) + y (2,) = P (TO) (3.3) 

we arrive at a singular integral equation relative to the function g’(s) 
(3.9) 

(L 

s 
-7- fg’ (t) K, (t - CC> + g (t) L, (t - s)] at = n [P (z) - A - A - BJ, I x f < @ 

--a K,(z) = ‘lzleia5(xeia) + cia;S (ze-ia)l 
L,(z) = I,/,[e-iac(xe-e-ia) _ xe-?ia p(xece-ibl) -i_ e-3ia ~l(~e-fa)l 



Integral equation of the plane problem of crack theory 681 

The constant A -j- A + B in (3.9) is found easily from the system (3.7) 

A+A+B= -$ [B& + r16 + Zl (e-2iab -j- ezia6)] 

Here all the quantities are known, with theexception of the constant b which must be 

determined while solving the integral equation (3.9). 
Let us note that the doubly-periodic problem of crack theory in [ 131 for the case when 

the fundamental period parallelogram is a rhombus,and the cracks are arranged along dia- 

gonals of the rhombus and tensile, constant intensity forces were applied to their edges, 
was reduced to a Fredholm integral equation of the second kind whose kernel is suffici- 
ently complex. 

4, Let there be N -I- 1 cracks of length 2ak(h- = 0, 1, . . ., N) in an elastic 
plane. Let us assume the crack with subscript o to be on the 0~ -axis (a, = 0) with 

center at the origin of the xOy -coordinate system (z,” = 0), while the remaining cracks 
are in the lower half-plane y < 0. Let us set p. (5) = 0. Letting a0 tend to infinity, 

we obtain a system of N cracks in an elastic half-plane with free edges. Equations 
(1.6) become o. 

‘k 

s gpt+ 5 1 lgk’(~)~ok(44-!- 
(4.1) 

--03 k=l-ak 

girl(t) LOk & z)l fit = O, 1 z 1 < ,262 

i; % kk’ @) &k (tt $> +Dt) ‘%k (tt z)l fit + 
k=l -[lk 

(4.2) 

1 z I;,, n = 1,2, . . . , N 

Having determined the function g,,‘( 5) from (4.1) and having substituted it into (4.2). 
we arrive afrersome manipulation at a system of N singular integral equations 

i: y [gk’(t)Mnk(tr5)+gkl)Nnk(t,~))ldt=TlPn(Z) (4.3) 
k=l-ak 

jrl<a,, n=i,Z,...,N 

For N = 1 and 05~ = x I 2 Im pi(z) = 0 , we arrive from (4.3) at an integral equa- 
tion [ 143. Let us note that integral equations of the elasticity theory problem for a strip 
weakened by a system of arbitrarily arranged cracks, can be obtained in a similar manner. 

5. Let us assume the centers of all the cracks to be on a line parallel to the boundary 
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of the half-plane, and the spacing between the centers of adjacent cracks to be identi- 
cally equal to d;i. e. zk” = xko + iyko = kd -ih(k = 0, +I, f 2, . . .), the 
lengths and slopes of the cracks to be equal (uk = a, ak = a), and an identical load 

Pkbk) = P (xk)) to be applied to all the cracks. Letting the number of cracks tend 

t0 infinity, we obtain a periodic SyStem Of Cracks Of arbitrary orientation ( gk( xk) = 
g (xk)) in the half-plane. We find the integral equation of such a problem analogously 
to the case of an infinite plate with a periodic system of cracks 

a 

s [g’ (t) M (t, x) + g’(t) (t, x)] dt = TIP(Z), I .iz I < a (5.1) 

Here 
--a 

M (t, x) = K1 (t - z) + ctg X (t, x) + e-2ia ctg X (t, z) - (5.2) 

2g(t sin a - h) cosec2 8 (t, x) 1 - e-2ia - 
[ 

&ie-2ia 
d x 

(x sin a - h) ctg X (t, x) 11 
Ice-i” 

N (t, 2) = LI (t - x) + T 
[ 
T (t 

s.in a - h) cosec2 X (t, I) + 

(1 _ e-2ia) ct,g X (t, x) _ 2e (z sin a - h) cosec2 X (t, z) , 1 
x (t, x) = + (x&a _ 2ih - te-ia) 

Asisseenfrom (4.4) and (5.2),the kernels of the integral equations (4.3) and (5.1) con- 
sist of two members: the first agrees with the kernels of (1.5) and (2.3). and the second 

takes account of the influence of the edge of the half-plane. 

6. Let us consider an elastic plane with circular holes of unit radius referred to the 
XUY-coordinate system with origin at the center of the hole. In this plane, let there be 

N arbitrarily oriented cracks whose edges are subjected to the forces (1.1). The contour 

of the hole y is unloaded. Let us reduce the problem of determining the stress-strain 
state of such a domain to the solution of a system of integral equations. 

Let us assume that all the cracks in an infinite plate without holes are outside the unit 
circle y. Using the complex potentials (1.3) and the formula from [l], we find the com- 
bination of stresses u,. + iT,Q caused in the circle Y(Z = eio = o) by displacement 

discontinuities gk(zk) (/L = 1, 2, . . . , N) 

G,, + izTo = d), (z) + CD, (2) - e-2i’) [ z’i,,‘+ Y1 (z)] = (6.1) 

We solve the auxiliary problem for an elastic plane with a circular hole of unit radius 
on whose contour normal and shear stresses are given which are equal in magnitude but 
opposite in sign to the stresses (6.1). The stress-strain state in this case is characterized 
by the functions [1] 

@, (2) = & 
e 

s, 
(or + It,,) 

6-Z 
da + + 

Y 



Integral equation of the plane problem of crack theory 683 

We should here set a, = ai’ - 0, since the principal vector of the forces applied to 

the contour y is zero. Substituting the stresses (6.1) here and reversing the order of in- 

tegration, we find after evaluating integrals 

The elastic equilibrium of an infinite plate with a free circular boundary and displa- 

cement jumps gk(zk) (k = 1, 2, . . , N) given 0nN segments gk = 0, 1 zk 1 < 
ak are determined by the complex potentials 

@s(z) = @X(4 -!- @4(s), Y&z) = ‘u,(z) + KM 

By req~ring that the fusions m,(z) and Y6(z) satisfy the boundary conditions (1.1) 

on the edges of the cracks, we arrive at a system of N singular integral equations rela- 
tive to the functions gk’(Xk) 

5 T fhk ($7 2) gk’ ft) -t- ‘%k @, x) ii?-@j(t)l dt = np, (x) @. 21 

k=l -ak 

lz16alE, n=f,Z,...,N 

Here 

_ 

-ia% 

‘!?,I, (t, s) = J!&& (t, x) + -+- 

,q?k - T, 

(1- TkX,)” + e 
-2ia, 
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The second terms in (6.3) determine the perturbing influence of the circular hole. For 
N = 1, a, = 0 , we obtain an equation [3, 7, 15, 161 from (6.2) for the case of a ra- 

dial crack in a plane with a circular hole. Let us also note that integral equations of the 
elasticity theory problem for a circular disc weakened by a system of arbitrarily arran- 

ged cracks can be obtained completely analogously. 

7. By knowing the functions gk’(z) (or g’(z)), the stress-strain state of a plane 

with arbitrarily oriented crackssubjected to the forces (1.1) can be determined. In par- 
ticular, we have the following formula for the stress intensity factor [17, 181 at the tips 

of any of the cracks 

k& - ikz =T lim li==1,2,..., N (7.1) 
s-1-a C 

l/Q.= gk,(Z) 

-k 1/C 17 

The quantities with the upper sign here refer to the right tips of the cracks and the lower 

to the left tips. Using the coefficients (7. l), the ultimate equilibrium state [ 181 of bo- 
dies with cracks can be investigated. 

I 

1 

f- 

a v-AL50 

Fig. 1 

As an illustration, let us examine the problem of the ultimate equilibrium of a plate 
with a periodic system of cracks which is subjected to biaxial tension at infinity by for- 
ces p and q in mutually perpendicular directions, where the forces P are directed at 
an angle cp to the 0~ -axis. We will then have 

p (5) = -s = --Vz [(p + Q) - (p - q) .$(+a)] 
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in the integral equation (2.2). 

The analytic solution of this equation is easily obtained [6] for small values of the 

dimensionless parameter h = 2a I d. The stress intensity factors are determined by 
means of the formula 

k$-ik$= Jf/a 
la.2 

s-f-24 [s cos 2u + s (,-Zia- e-4ia) J f 

na 

i[ 
2 

zXs -9 co@ 2a + f cos 40 + f (1 - 00s 2a) 1 + 2s (f-4‘-Pi= - ,+) x 

( 
$ f + e-zia cos 2a)} + nehs (s [$- cos 6x + $ ~0~s 2% + 28.3” 

2 
$ cos 2a cos4a + -5- f+ (1 - co9 2a) + cos 2a (1 - cos 2a) + 

3 . 
- 5 emna (1 - ~0s za) 1 + g fe4.zia_._ e-lia ) [~ ,-4ia + f. ,%:a GOS 2% + 

1 
--J- cos 4a + 

1 
2 co9 2a + 

1 
-j- (1 - cos 2u) 111 + 0 (AS) 

By using the Griffith-Irwin brittle fracture criterion and the hypothesis about the ini- 

tial direction of crack propagation over areas with maximal normal stresses, we deter- 
mine the magnitude of the crack extension forces. The dependence of the critical va- 
lues p* of the force p (q 2- 0, cp = 51 / 2 f a) on the angle of crack orientation a is 

represented in Fig. 1 for diverse values of h (~0 is the same value of the force p for 
the case of an isolated crack (1 = 0)). 

In conclusion, let us note that the method proposed here to obtain the integral equa- 
tions of the plane elasticity theory problem for a body with cracks, can be applied in 

other problems also, in particular, in bending problems of a plate with cracks, as well as 
in corresponding thermoelasticity problems. 
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For a linear controlled system we examine the evasion problem on an infinite 

semi-interval of time. The paper abuts the investigations in [l - 51. The solu- 
tion is effected by the scheme of control with a leader [3, 41. 

1. We examine a controlled system described by the vector differential equation 

dx / dt = Ax + Bu -1 Co, I( E P, u E Q” (1.1) 

Here I is the k-dimensional phase coordinate vector, u and u are r(r)- and r’“)-dimen- 

sional vectors, respectively ; A, B, C are matrices with constant coefficients of dimen- 

sion k X k, k X r(l), k X rt2), respectively ; the first and second player’s controls are 

constrained by the conditions indicated above, where P and Q are convex compacta 
in the corresponding vector spaces. The symbol Q” denotes the closed Euclidean a- 


